

Evaluation of Consumer Photometers for Measuring Environmental and Occupational Aerosols

Sinan Sousan¹, Laura Hallett¹, Kirsten Koehler², and Thomas M. Peters¹ ¹Department of Occupational and Environmental Health, University of Iowa ²Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

Background

- Photometers are direct-reading instruments that provide real-time aerosol mass concentrations inferred from scattered light by an assembly of particles.
- The high-cost of photometers (>\$5,000) can make them outside the budget for many industrial hygiene programs.
- Recently, many consumer photometers (<\$300) have become available, marketed for in-home use.

Objective

 Evaluate the performance of consumer low-cost sensors for environmental and occupational aerosols.

Methods

Measurement Devices

- Three Consumer Photometers (Table 1)
- Traditional Field Photometer
 - pDR-1500 (\$6,000) operated with an inlet cyclone (cut-off diameter of 2.5 μm) and a 37-mm glass microfiber filter
- Reference Instruments
 - Aerodynamic Particle Sizer (APS; \$45,000)
 - Scanning Mobility Particle Sizer (SMPS; \$65,000)
- Gravimetric filter used to correct reference instrument mass measurements only

Test Aerosols

- Salt Particles, 0.9% solution (non-absorbing fine particles)
- Welding Fume (absorbing fine particles)
- Arizona Road Dust (ARD; coarse particles)

Selected Environmental and Occupational Settings

- Environmental: up to 300 µg/m³.
- Occupational : Maximum allowable concentration (up to 8,500 µg/m³) based on the aerosol generation methods used and experimental setup.

Performance Metrics

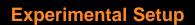
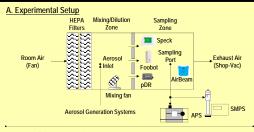
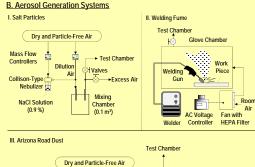

- Precision (Coefficient of variation-CV)
- UI COLLEGE OF Slope and Intercept PUBLIC HEALTH • Correlation DEPT OF OCCUPATIONAL & ENVIRONMENTAL HEALTH • Bias

Table 1: Selected Consumer Photometers

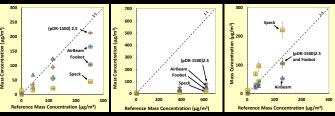
HabitatMap


AirBeam

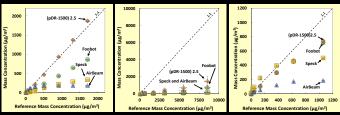


\$250

300 µg/m³


Results

Welding Fume


Arizona Road Dust

Environmental Concentrations

Salt Particles

Occupational Concentrations

- Foobot exhibited the best performance of consumer photometers, approaching that of the pDR-1500.
- Mass concentration of Foobot linear and highly correlated with reference instruments. Speck and AirBeam non-linear.
- As expected, type of aerosol had a large impact on all photometer responses.
 - Robust response observed for salt and ARD
 - Poor response for welding fume, which is brown in color and dominated by sub-300 nm particles.
- All consumer photometers had high bias values compared to reference instruments.

Conclusions

- Foobot (\$200) responds similarly to the traditional field photometer, pDR-1500 (\$6,000)
- Aerosol size and composition dramatically impacts the response of all photometer devices.

Acknowledgements

 This research was funded by NIOSH (R01 OH010533) and supported by the Heartland Center for Occupational Health and Safety Research - Industrial Hygiene Training Program (CDC/NIOSH - 2 T42 OH008491)