

# **Evaluation of Low-Cost Monitor for Particles in Heavy Vehicle Manufacturing**

Samuel Jones, Levi Mines, and Thomas M. Peters

Department of Occupational and Environmental Health, The College of Public Health, The University of Iowa

## **Background**

- · In heavy vehicle manufacturing plants, personal occupation exposure assessments are timely and
- · Several processes in the plant include machining, welding, and plasma cutting.
- Use of direct read instruments to estimate personal exposure to airborne particulates can be efficient and cost effective.

## **Objective**

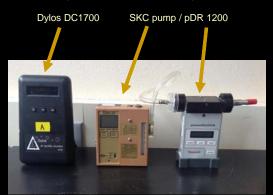
Evaluate effectiveness of low-cost particle detection device (Dylos DC1700) to standard mass photometer (personal DataRAM).

### **Methods**

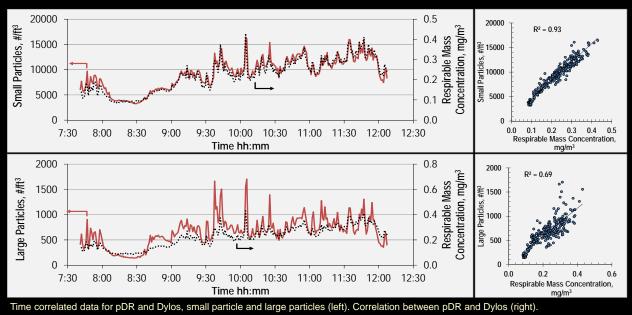
#### Equipment

- Personal DataRAM (pDR-1200) with SKC pump, PVC filter and respirable cyclone (~&5,000) D<sub>50</sub>4.0
- Dylos DC1700 (~\$400), small particle channel between 0.5um and 2.5um and large particle channel > 2.5um

#### **Data Acquisition**


- Locations
  - Machining area
  - Welding area
  - · Mixed area containing both machining and
- Plasma cutting area
- Combination of oil mist

- Dominated by oil mist


and metal fume

- Dominated by metal fume

- Enclosed metal fume
- · Sampling period: 2-4 hours depending on cycle time



### **Results**



# Mixed Machining Plasma Cutter Welding 30000 Small Particles, #/ft<sup>3</sup> 20000 10000 0.0 0.5 1.0 1.5 Respirable Mass Concentration, mg/m3

All concentrations measured at each location inside vehicle manufacturing plant

### **Conclusions**

- · Concentrations measured with the Dylos tracked those measured with the pDR well
- · Concentrations measured with the Dylos correlated well with those measured with the pDR
- Small particle concentrations R<sup>2</sup> = 0.87
- Large particle concentrations R<sup>2</sup> = 0.64

### **Future Work**

- · Use low-cost monitoring to supplement traditional personal exposure monitoring
- Develop correction factors to account for differences in light scattering properties of aerosols by process

# **Acknowledgements**

We greatly appreciate the support from the heavy vehicle manufacturing industry who made this work possible.



**UI COLLEGE OF PUBLIC HEALTH** DEPT OF OCCUPATIONAL &