Evaluation of Low-Cost Monitor for Particles in Heavy Vehicle Manufacturing Samuel Jones, Levi Mines, and Thomas M. Peters Department of Occupational and Environmental Health, The College of Public Health, The University of Iowa ## **Background** - · In heavy vehicle manufacturing plants, personal occupation exposure assessments are timely and - · Several processes in the plant include machining, welding, and plasma cutting. - Use of direct read instruments to estimate personal exposure to airborne particulates can be efficient and cost effective. ## **Objective** Evaluate effectiveness of low-cost particle detection device (Dylos DC1700) to standard mass photometer (personal DataRAM). ### **Methods** #### Equipment - Personal DataRAM (pDR-1200) with SKC pump, PVC filter and respirable cyclone (~&5,000) D₅₀4.0 - Dylos DC1700 (~\$400), small particle channel between 0.5um and 2.5um and large particle channel > 2.5um #### **Data Acquisition** - Locations - Machining area - Welding area - · Mixed area containing both machining and - Plasma cutting area - Combination of oil mist - Dominated by oil mist and metal fume - Dominated by metal fume - Enclosed metal fume - · Sampling period: 2-4 hours depending on cycle time ### **Results** # Mixed Machining Plasma Cutter Welding 30000 Small Particles, #/ft³ 20000 10000 0.0 0.5 1.0 1.5 Respirable Mass Concentration, mg/m3 All concentrations measured at each location inside vehicle manufacturing plant ### **Conclusions** - · Concentrations measured with the Dylos tracked those measured with the pDR well - · Concentrations measured with the Dylos correlated well with those measured with the pDR - Small particle concentrations R² = 0.87 - Large particle concentrations R² = 0.64 ### **Future Work** - · Use low-cost monitoring to supplement traditional personal exposure monitoring - Develop correction factors to account for differences in light scattering properties of aerosols by process # **Acknowledgements** We greatly appreciate the support from the heavy vehicle manufacturing industry who made this work possible. **UI COLLEGE OF PUBLIC HEALTH** DEPT OF OCCUPATIONAL &