

Passive Sampling to Characterize Spatial and Compositional Variability in **Coarse Particulate Matter (PM_{10-2.5})**

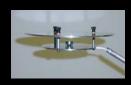
EJ Sawvel¹, TM Peters¹, N Kumar², RD Willis³

¹Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA ²Department of Geography, The University of Iowa, Iowa City, IA ³National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC

Background

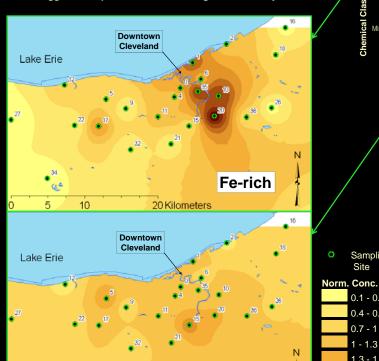
Low-cost passive sampling provides an effective means to capture and characterize spatial variability of coarse particulate matter (PM_{10-2.5}) over large geographic areas. Computer controlled scanning electron microscopy (CCSEM) may be performed to obtain information on morphology and composition in addition to mass.

Objective

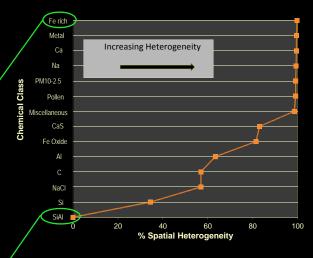

Characterize spatial variability of PM_{10-2.5} by composition using passive samplers

Methods

- · Deployed passive samplers at 26 sites for week-long intervals over three weeks
- Analyzed chemical composition and size of individual particles by CCSEM with energy dispersive X-ray spectroscopy
- Segregated PM10-2.5 mass into fourteen chemical classes based on CCSEM results
- · Used geostatistical methods to quantify the spatial variability of each chemical class as relative spatial heterogeneity (% SH)
- Plotted normalized concentrations (concentration / mean) to visually compare relative spatial variability between chemical classes


UNC passive sampler

Passive Sampler installed in Ott-Peters shelter.


Results

- · Fe-rich most spatially heterogeneous chemical class; suggests local sources
- · SiAl least spatially heterogenous chemical class; suggests ubiquitous sources throughout the study area

Compositional variability example comparing particle class Ferich (Top) to particle class SiAI (Bottom) across Cleveland , OH airshed. Results are normalized concentrations (concentration /mean) for each particle class. Numbers on maps represent sampling site locations

SiAI

Percent spatial heterogeneity for all three weeks by chemical class

Conclusions

· Some chemical classes are substantially more heterogeneous than others

Sampling

0.1 - 0.4

0.4 - 0.7

0.7 - 1

1 - 1.3

1.3 - 1.6 1.6 - 1.9

1.9 - 2.2 2.2 - 2.5

2.5 - 2.8

2.8 - 3.1

 Passive sampling with analysis by CCSEM / EDS provides a powerful tool to assess spatial variability of particulate pollutants by composition

Future Research

- Compare PM10-2.5 measured passively to that measured by federal reference method
- · Investigate relationships among adverse health outcomes and coarse particle concentrations by composition

DEPT OF OCCUPATIONAL & ENVIRONMENTAL HEALTH