

Design and Laboratory Validation of an Inexpensive Noise Sensor

Laura Hallett¹, Sinan Sousan¹, Marcus Tatum², Geb W. Thomas², and Thomas M. Peters¹ ¹Department of Occupational and Environmental Health, University of Iowa ²Department of Mechanical and Industrial Engineering, University of Iowa

Background

- Noise is a pervasive workplace hazard that can vary both spatially and temporally
- Workplace noise maps can be generated by a mobile researcher using an expensive reference sound level meter (SLM)
- The temporal representativeness of noise measurements may benefit from the use of a stationary network of inexpensive noise monitors

Objectives

- Design a noise sensor (<\$100) that reports A-weighted sound pressure levels, is independent of a cell phone, and is compact
- Evaluate performance of noise sensor
 Precision: Coefficient of variation less than 10%
- Accuracy: Within ±2 dB of Type 2 Reference SLM

Methods

Equipment

- Inexpensive Noise Sensor (Figure 1, ~\$70)
- Type 2 Sound Level Meter (SLM,~\$1,800)
- NTI XL2 Audio and Acoustic Analyzer with M4260 microphone

Test Levels

- Ambient noise in quiet office
- Pink noise at 65 dBA, 75 dBA, 85 dBA
- SLM Calibrator at 94 dBA

Data Collection

- At each test level, record sound level every 2s for 30s
- Determine 30s average for both instruments at each test level

Performance Metrics

- · Bias by test level and overall for two ranges
- 65 to 94 dBA
- 75 to 94 dBA
- Precision (Coefficient of variation-CV)
- Slope and Intercept

UI COLLEGE OF PUBLIC HEALTH DEPT OF OCCUPATIONAL & ENVIRONMENTAL HEALTH

Sensor Design

A) Monitor Exterior

B) Monitor Interior

Results

Mean, A-weighted decibel measurements from sensor vs. SLM at 5 test levels. Points represent means of the individual sensor means at each test level, n=46 sensors

Results, continued

Table 1: Mean sound pressure levels, standard deviation, and coefficient of variation at five target dBA levels (side by side, 65, 75, 85, 94 dBA). Acceptance criterion was ± 2 dBA from reference SLM, n= 46 monitors.

	Mean ± SD (d			
	Reference	Monitor	– Mean Bias, %	% Within ±2 dBA
Ambient	$50.6\pm1.9,3.8$	$\textbf{62.0}\pm\textbf{3.2,}\textbf{5.2}$	18.3	2.1
65 dBA	$65.4 \pm 0.45, 0.69$	$67.7 \pm \mathbf{1.7, 2.4}$	3.22	62
75 dBA	$75.4 \pm 0.13, 0.18$	$76.3 \pm 0.55, 0.72$	1.15	98
85 dBA	$85.2 \pm 0.12, 0.13$	$85.9 \pm 0.37, 0.43$	0.83	100
94 dBA	$94\pm0,0$	$94.4 \pm 0.49, 0.52$	0.48	100

Table 2: Correlation, slope and intercept, bias and coefficient of variation results for noise sensors from 75 dBA to 94 dBA, n= 46 monitors.

	Mean	Std. Dev	5 th Percentile	95 th Percentile	
Slope	0.98	0.03	0.94	1.00	
Intercept, dBA	2.65	2.45	-0.41	6.67	
Correlation, r	1.00	0.001	1.00	1.00	
Overall Bias, %	0.83	0.46	0.06	1.6	
Overall CV, %	0.76	0.27	-	-	
					1

- Inexpensive noise sensor (-\$30 for components) provided similar sound pressure level measurements in dBA to a substantially more expensive, Type 2 reference SLM (-\$1,800)
- Ninety-four percent of noise sensors were within ± 2 dBA of the reference SLM from 75 to 94 dBA
- Coefficient of variation of sensors (CV) was 0.76% from 75 to 94 dBA
- · Sensors are independent of smartphone and compact

Conclusions

- New, inexpensive noise sensor (-\$70) responded similarly to more expensive reference sound level meter from 75 to 94 dBA
- Noise sensor can be used for a variety of applications, including incorporation into a sensor network

Acknowledgements

 This research was generously funded by NIOSH (R01 OH010533) and supported by the Heartland Center for Occupational Health and Safety Research - Industrial Hygiene Training Program (CDC/NIOSH - 2 T42 OH008491)